## March Study of the Month:

Effect of 48 hour Fasting on Autonomic Function, Brain Activity, Cognition, and Mood in Amateur Weight Lifters

## Summary by Dr. Qingping (Amanda) Zheng, ND

Fasting is widely used and recommended for disease prevention and treatment. A body of evidence suggests that long-term intermittent and periodic fasting promotes health and reduces the risk of many chronic diseases, however little and equivocal information is available regarding the effects of short-duration fasting. The current study (1) aimed to estimate the effect of a 48 h, zero-calorie diet on autonomic function, brain activity, cognition, and mood in amateur weight lifters.

**Study design:** A "pre-post" unblinded clinical trial study.

**Population:** 9 male healthy volunteers with more than 3 years of weightlifting training experience. Intervention: a 48 h, zero-calorie diet program with water provided ad libitum was carried out.

Comparison: Self comparison of each participant was made between after and before fasting.

**Outcome:** Cardiovascular autonomic function (general heart rate variability); was assessed as resting frontal brain activity (functional near-infrared spectroscopy), cognitive performance including visuospatial Discrimination, spatial orientation ability, working Memory and mental flexibility, and mood were evaluated before and after fasting.

**Results:** Fasting decreased (p<0.05) weight, heart rate, and systolic blood pressure, whereas no statistically changes were evident regarding any of the measured heart rate variability indices. Fasting decreased (p<0.05) the concentration of oxygenated hemoglobin and improved (p<0.05) mental flexibility, whereas no changes were observed in working memory, visuospatial discrimination, and spatial orientation ability. Fasting also increased (p<0.05) anger, whereas other mood states were not affected by it.

**Discussion:** There are some limitations in this study: the sample is small and male only, the magnitude of observed effects is relatively small despite being statistically significant on some indices and the participants who are resistance-trained individual, which limits the generalizability of these findings to the general population since athletes exhibit an attenuated response to stressors (2). However, this study observed that enhanced prefrontal-cortex-related (PFC) tasks performance was strongly associated with a lower resting brain activity (decreased OxyHb) induced by 48 h fasting. In contrast, hippocampus-related cognitive performance was not affected by total calorie deprivation. We know that the PFC—the most evolved brain region—subserves our highest-order cognitive abilities, has a relatively high metabolic demand, and is sensitive to the detrimental effects of stress exposure (3). Why is performance improved after a zero calorie challenge? How do you interpret these findings? How do you think this might be applicable or perhaps beneficial for patients with cognition dysfunction?

## **References:**

1. Solianik R, Sujeta A, Terentjevien A et al. Effect of 48 h Fasting on Autonomic Function, Brain Activity, Cognition, AND mood in Amateur Weight Lifters. Biomed Res Int. 2016; 2016:1503956.

2. Camila S. Padilha, Alex S et al. Effect of resistance training with different frequencies and detraining on muscular strength and oxidative stress biomarkers in older women. Age (Dordr) 2015 Oct; 37(5): 104.

3. Arnsten AF. Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci. 2009 Jun;

10(6):410-22.

Follow the discussion in the **CCNM Research Club** forums on Moodle, or contact Research Residents Dr. Qingping (Amanda) Zheng, ND (**qzheng@ccnm.edu**) or Dr. Ehab Mohammed ND, MD Oncologist, Egypt (**emohammed @ccnm.edu**) to learn more.

## Follow CCNM Research on social media:

Twitter: @myCCNMResearch

Facebook: /myCCNMResearch

